India's Most Comprehensive & the Most Relevant Test Series designed according to the latest pattern of exams! **JEE MAIN** JEE ADV. WBJEE **MHT CET** and many more... Click here to join Test Series for 2022 It's time for you to crack upcoming IIT JEE Main & Advanced and other competitive exams with India's Most Trusted Online Test Series. Many questions at JEE Main 2021 were same/similar to the ones asked in our test series. That's the power of our test series! # Trusted by thousands of students & their parents across the nation Our result in JEE Main 2021 150+ Got 99+ percentile (overall) 301 Got **99+ percentile** in one or more subjects 85% Improved their score by **25 percentile** 89% Felt **overall confident** after the test series Click here to join Test Series for 2022 # FREE Question Bank & Previous Year Questions for **JEE MAIN** JEE ADV. BITSAT W WBJEE MHT CET and many more... ## **Why download MARKS?** - Chapter-wise PYQ of JEE Main, JEE Advanced, NEET, AIIMS, BITSAT, WBJEE, MHT CET etc. - Chapter-wise NTA Abhyas questions - Taily practice challenge and goal completion - Bookmark important questions and add them to your notebooks - Create unlimited Custom Tests And all this for FREE. Yes, FREE! So what are you waiting for, download MARKS now. 4.8 Rating on Google Play 30,000+ Students using daily 1,00,000+ Questions available ### Differentiation #### Derivative - (i) The rate of change of one quantity with respect to some other quantity has a great importance. For example the rate of change of displacement of a particle with respect to time is called its velocity and rate of change of velocity is called its acceleration. The rate of change of a quantity 'y' with respect to another quantity 'x' is called the derivative or differential coefficient of y with respect to x. - (ii) Let y = f(x) be a continuous function of an independent variable x. Let dx be an arbitrary small change in the value of x and dy be the corresponding change in that of y. Then limit of the ratio $\frac{\delta y}{\delta x}$ as $\delta x \to 0$, if exists, is named as the derivative or differential coefficient of x with respect to y and it is denoted by dy / dx So $$\frac{dy}{dx} = \lim_{x \to 0} \frac{\delta y}{\delta x}$$ i.e. $$\frac{dy}{dx} = \lim_{\delta x \to 0} \frac{f(x + \delta x) - f(x)}{\delta x} = f'(x)$$ Derivative of y with respect to x is also denoted by the following symbols: $y \notin y_1$, Dy The process of finding derivative of a function is called differentiation. #### Derivatives of some standard functions #### Some Differentiation Formulae (i) $$\frac{d}{dx}$$ (constant) = 0 (iii) $$\frac{d}{dx} (e^x) = e^x$$ (v) $$\frac{d}{dx} (\log_e x) = \frac{1}{x}$$ (vii) $$\frac{d}{dx} (\sin x) = \cos x$$ (ix) $$\frac{d}{dx}$$ (tan x) = $\sec^2 x$ (xi) $$\frac{d}{dx}$$ (sec x) = sec x tan x (xiii) $$\frac{d}{dx} (\sin^{-1} x) = \frac{1}{\sqrt{1 - x^2}} ; -1 < x < 1$$ (xv) $$\frac{d}{dx} (tan^{-1}x) = \frac{1}{1+x^2}$$; $x \in R$ (xvii) $$\frac{d}{dx} (\sec^{-1} x) = \frac{1}{|x| \sqrt{x^2 - 1}}, |x| > 1$$ (ii) $$\frac{d}{dx}(x^n) = nx^{n-1}$$ (iv) $$\frac{d}{dx}(a^x) = a^x \log_e a$$ (vi) $$\frac{d}{dx} (\log_a x) = \frac{1}{x \log_e a}$$ (viii) $$\frac{d}{dx} (\cos x) = -\sin x$$ (x) $$\frac{d}{dx}$$ (cot x) = $-\csc^2 x$ (xii) $$\frac{d}{dx}$$ (cosec x) = -cosec x cot x (xiv) $$\frac{d}{dx} (\cos^{-1} x) = -\frac{1}{\sqrt{1-x^2}} ; -1 < x < 1$$ (xvi) $$\frac{d}{dx} (\cot^{-1} x) = -\frac{1}{1+x^2}, \forall x \in R$$ (xviii) $$\frac{d}{dx}$$ (cosec⁻¹x) = $\frac{-1}{|x|\sqrt{x^2-1}}$; |x| > 1 [2] Differentiation $$(xix) \frac{d}{dx} (e^{ax} \sin bx) = e^{ax} (a \sin bx + b \cos bx) = \sqrt{a^2 + b^2} e^{ax} \sin (bx + tan^{-1} \frac{b}{a})$$ $$(xx) \frac{d}{dx} (e^{ax} \cos bx) = e^{ax} (a \cos bx - b \sin bx) = \sqrt{a^2 + b^2} e^{ax} \cos (bx + tan^{-1} \frac{b}{a})$$ $$(xxi) \ \frac{\text{d}}{\text{d}x} \ |x| = \frac{x}{|x|} \ (x \neq 0) \qquad \qquad (xxii) \quad \frac{\text{d}}{\text{d}x} \ \log|x| = \frac{1}{x} \ (x \neq 0)$$ #### Some theorems of differentiation (i) $$\frac{d}{dx}(f(x) \pm g(x)) = \frac{d}{dx}(f(x)) \pm \frac{d}{dx}(g(x))$$ (ii) $$\frac{d}{dx}(k f(x)) = k \frac{d}{dx}(f(x))$$, where k is any constant $$(iii) \quad \frac{d}{dx}(f_1(x).f_2(x)) = (f_1(x))\frac{d}{dx}(f_2(x)) + (f_2(x)) \quad \frac{d}{dx}(f_1(x))$$ (iv) $$\frac{d}{dx} \left(\frac{f_1(x)}{f_2(x)} \right) = \frac{f_2(x) \frac{d}{dx} (f_1(x)) - f_1(x)}{(f_2(x))^2} \frac{d}{dx} (f_2(x))$$ (v) Derivative of the function of the function. If 'y' is a function of 't' and 't' is a function of 'x', then $$\frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx}$$ Thus $$\frac{d}{dx} \left\{ g[f(x)] \right\} = \frac{dg\{f(x)\}}{df(x)} \cdot \frac{d}{dx} f(x) = g' \left\{ f(x) \right\} \cdot f'(x)$$ (vi) Derivative of parametric equation If $$x = \phi(t)$$, $y = \psi(t)$ then $$\frac{dy}{dx} = \frac{dy}{dt} / \frac{dx}{dt}$$ (vii) Derivative of a function w.r..t another function If f(x) and g(x) are two function of a variable x, then $$\frac{d(f(x))}{d(g(x))} = \frac{d}{dx}(f(x)) / \frac{d}{dx}(g(x))$$ #### Differentiation of Implicit Functions If in an implicit function f(x, y) = 0, y cannot be expressed in terms of x, then we differentiate both sides of the given equation w.r.t. x and collect all terms containing $\frac{dy}{dx}$ on L.H.S. NOTE: In the above process we obtain dy/dx in terms of both x and y. If we want dy/dx in terms of x only, then let us first express y in terms of x. Short method of differentiation for implicit functions If f(x,y) = constant, then Differentiation [3] $$\frac{dy}{dx} = -\left(\frac{\partial f}{\partial x}\right) / \left(\frac{\partial f}{\partial y}\right)$$ where $\left(\frac{\partial f}{\partial x}\right)$ and $\left(\frac{\partial f}{\partial y}\right)$ are partial derivatives of f (x ,y) with respect to x and y respectively. [By partial derivative of f(x, y) with respect to x, we mean the derivative of f(x, y) with respect to x when y is treated as a constant.] #### Logarithmic differentiation If differentiation of an expression or an equation is done after taking log on both sides, then it is called logarithmic differentiation. Generally we apply this method when given expression is in one of the following forms - (i) $[f(x)]^{g(x)}$ - (ii) product of three or more function #### Some Suitable substitutions - (i) If the function involve the term $\sqrt{a^2 x^2}$, then substitute $x = a \sin \theta$ or $x = a \cos \theta$ - (ii) If the function involve the term $\sqrt{x^2 + a^2}$, then substitute $x = a \tan \theta$ or $x = a \cot \theta$ - (iii) If the function involve the term $\sqrt{x^2 a^2}$, then substitute $x = a \sec \theta$ or $x = a \csc \theta$ - (iv) If the function involve the term $\left(\sqrt{\frac{a-x}{a+x}}\right)$, then substitute $x=a\cos\theta$ or $x=a\cos2\theta$ #### Differentiation of a Determinant Function $$If F(x) = \begin{vmatrix} f & g & h \\ 1 & m & n \\ u & v & w \end{vmatrix}$$ Where f, g, h, λ , m, n, u, v, w are functions of x and differentiable, then $$\mathrm{or} \qquad F'(x) = \left| \begin{array}{ccc|c} f' & g & h \\ 1' & m & n \\ u' & v & w \end{array} \right| + \left| \begin{array}{ccc|c} f & g' & h \\ 1 & m' & n \\ u & v' & w \end{array} \right| + \left| \begin{array}{ccc|c} f & g & h' \\ 1 & m & n' \\ u & v & w' \end{array} \right|$$